The Haar Wavelet Transform of the DNA Signal Representation
نویسندگان
چکیده
The Deoxyribonucleic Acid (DNA) which is a doublestranded helix of nucleotides consists of: Adenine (A), Cytosine (C), Guanine (G) and Thymine (T). In this work, we convert this genetic code into an equivalent digital signal representation. Applying a wavelet transform, such as Haar wavelet, we will be able to extract details that are not so clear in the original genetic code. We compare between different organisms using the results of the Haar wavelet Transform. This is achieved by using the trend part of the signal since the trend part bears the most energy of the digital signal representation. Consequently, we will be able to quantitatively reconstruct different biological families. Keywords—Digital Signal, DNA, Fluctuation part, Haar wavelet, Nucleotides, Trend part.
منابع مشابه
Wavelet Transformation
Wavelet transformation is one of the most practical mathematical transformations in the field of image processing, especially image and signal processing. Depending on the nature of the multiresolution analysis, Wavelet transformation become more accessible and powerful tools. In this paper, we refer to the mathematical foundations of this transformation. Introduction: The...
متن کاملNumerical inversion of Laplace transform via wavelet in ordinary differential equations
This paper presents a rational Haar wavelet operational method for solving the inverse Laplace transform problem and improves inherent errors from irrational Haar wavelet. The approach is thus straightforward, rather simple and suitable for computer programming. We define that $P$ is the operational matrix for integration of the orthogonal Haar wavelet. Simultaneously, simplify the formulaes of...
متن کاملA combined Wavelet- Artificial Neural Network model and its application to the prediction of groundwater level fluctuations
Accurate groundwater level modeling and forecasting contribute to civil projects, land use, citys planning and water resources management. Combined Wavelet-Artificial Neural Network (WANN) model has been widely used in recent years to forecast hydrological and hydrogeological phenomena. This study investigates the sensitivity of the pre-processing to the wavelet type and decomposition level in ...
متن کاملSignal Processing Applications of Wavelets
Wavelets are powerful mechanisms for analyzing and processing digital signals. The wavelet transform translates the time-amplitude representation of a signal to a time-frequency representation that is encapsulated as a set of wavelet coefficients. These wavelet coefficients can be manipulated in a frequency-dependent manner to achieve various digital signal processing effects. The inverse wavel...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کامل